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Abstract 

A principal components analysis of the South African Yield Curve suggests that two 

factors explain most of the variability in both yield levels and changes in yields. This 

result is then used to select which interest rates to model and how to use these rates to 

reproduce the entire curve. 
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Introduction 

In many actuarial and investment applications such as asset-liability management, 

solvency testing and value-at-risk calculations, realistic estimates of the distribution of 

future yields are required. Since it is not practical to model the entire yield curve, 

Tilley (1992; 527) suggests modelling 8 key yields and interpolating in order to reduce 

the dimension of the model at the expense of producing non-key yields that are not 

arbitrage free. In order to reduce the dimension of the problem further, Sherris (1994) 

suggests factor analysis to determine the dimension of randomness in the yield curve. 

In this paper, Principal Components Analysis (PCA) is used to determine the number 

of points, n, required to adequately model the South African yield curve. The subset 

consisting of the first n principal components is then used to reproduce the entire yield 

curve, given a specific subset of n points along the curve. These maturities can then be 

modelled as part of a larger set of variables including other asset categories and 

economic variables for the purposes of modelling the assets and liabilities of a 

financial institution. 

Background 

Prior to 1982, there was virtually no active secondary market in bonds. Prescribed 

asset legislation forced pension and provident funds and insurance companies to hold a 

certain percentage of their assets in respect of liabilities in government bonds, cash and 

other approved bonds. In the 1970’s, insurance companies and pension funds held on 

average 41% of the long-term domestic marketable stock debt of the central 

government (compared with 47% by the Public Investment Commissioners); and 70% 

of local authorities’ stock, (Falkena et al., 1984; 129). 

In the early 1980’s, an active secondary market in South African bonds began 

developing and has been growing rapidly ever since (McLeod, 1990). In 1986, the 

Johannesburg Stock Exchange (JSE) instituted a bond clearing-house and although the 

majority of bond trading was “over-the-counter” (OTC), a small number of trades were 

recorded on the JSE. Since some trades were recorded at each available maturity and 
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since these trades would have reflected yields traded OTC, the JSE-Actuaries Yield 

Curve can be considered to be a fair estimate of market yields prevailing at the time. In 

1996, the bond exchange opened and the Financial Markets Control Act now requires 

all bond trades to be recorded by a recognised exchange. 

Principal components analysis 

A number of discrete-time models suggested by academic researchers and practitioners 

conclude that the short rate is non-stationary. A partial listing of these authors include 

Stock and Watson (1988), Mills (1994; 68), Ang and Moore (1994), Johansen and 

Juselius (1992), Juselius (1995), and Pesaran and Shin (1996). In contrast, continuous- 

time models of the short-term interest rate often include a mean reversion term (see, 

for example, Vasicek (1977) Brennan and Schwartz (1982) and Cox, Ingersol and 

Ross (1985)). In this paper, a principal components analysis (PCA) of both the levels 

and first differences of the South African yield is presented. 

Let x be a random d-vector with mean p and covariance matrix C, and let T = 

(tl,t:,. .,td) be an orthogonal matrix such that T’CT = diag(ht,hl,. . .,I& where ht 2 1~ 

2 . . . 2 hd are the eigenvalues of C. If y = T’(x - p), then yj = t,‘(x - u) is called the j” 

principal component score of x and is the orthogonal projection of x - p in the direction 

t, (Seber, 1984; 176). Principal components analysis explains the variance-covariance 

structure of the original variables through an orthogonal rotation of x such that the first 

principal component gives the direction of maximum variation, the second principal 

component gives the next largest direction of maximum variability orthogonal to the 

first principal component, and so on. d principal components are required to reproduce 

the total system variability completely but much fewer principal components may 

explain a reasonable proportion of the total variability and hence reduce the dimension 

of the model with only a small loss of information. 

We define the yields for annual terms from 0 and 25 years along the JSE-Actuaries 

Yield Curve (with the INET (1998) codes J.4 YCOO, JA YCOI . . JA YCZS) to be our 26 
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dimensional random vector. If yields are stationary with structural breaks, the 

moments of the level yields exist. Table 1 provides summary statistics for key yields at 

annual maturities from 0 to 25 years using monthly data from January 1986 to 

December 1998 while Figure 1 illustrates the yield curve over this period. 

Mean Median Standard Minimum Maximum 

/A YCOO 
IA YCOl 
JA YCOZ 
JA YC03 
JA YCo4 
JA YCOS 
JA YCO? 
JA YCIO 
JA YC15 
JA YC20 

14.55 14.58 
14.38 14.59 
14.28 14.55 
14.37 14.72 
14.59 14.90 
14.84 15.21 
15.26 15.67 
15.58 15.80 
15.69 15.94 
15.65 15.77 

deviation 
3.31 8.47 22.99 
2.72 9.24 2.31 
2.25 10.01 1.64 
1.94 10.36 1.06 
1.74 10.61 0.59 
1.59 10.91 0.24 
1.41 11.39 9.84 
1.33 11.75 9.72 
1.29 11.96 9.49 
1.25 12.02 9.34 

Table 1 JSE-Actuaries Yield Curve (1986- 1998) 

Figure 1 JSE-Actuaries Yield Curve (1986-1998) 

472 



A PCA on the covariance matrix reveals that the first principal component explains 

77.1% of the total variability in the yield curve, the first two principal components 

together explain 98.4% and the first three principal components together explain 

99.4% of the total variability in the yield curve. Figure 2 illustrates the coefficients of 

each of the first three principal components by term to maturity. 
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Figure 2 Coeffkients for the first three principal components of yield levels 

The coefficients for the first principal component are all positive so that an increase in 

the score of the first principal component results in an increase in all yields. The first 

principal component can therefore be regarded as a level factor. Since the coefficients 

are not all equal, a change in the score of the first principal component does not result 

in a parallel shift; instead, the short end of the curve moves more than the long end. 

The coeffkients for the second factor are negative at the short end and monotonically 

increase to a positive value at the long end. Hence, a change in the score of the second 

principal component results in an opposite effect on the two ends of the yield curve 

and this factor can be viewed as causing a change in the slope of the yield curve. The 

third principal component has a negative effect on medium yields and a positive effect 
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on short and long-term yields and hence can be interpreted as a curvature factor. 

Figure 3 illustrates the principal component scores for the first three principal 

components from January 1986 to December 1998. 

Figure 3 Principal component scores for yield levels (1986 - 1998) 

The third principal component accounts for only 1% of the total variability and the 

remaining 23 principal components account for about 0.5% of the total variability. 

Hence, two principal components appear to capture most of the variability in the yield 

curve. The next section discusses how these principal components can be used to 

reconstruct the entire yield curve. 

So far, we have considered level yields. If yields are non-stationary, then the 

population moments of the level yields do not exist. We now define the changes in 

yields for annual terms from 0 and 25 years along the JSE-Actuaries Yield Curve to be 

our 26 dimensional random vector and again use monthly yield data from January 

1986 to December 1998. 
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A PCA on the covariance matrix of changes in yields reveals that the first principal 

component alone explains 92.8% of the total variability, the first two principal 

components together explain 97.3% and the first three principal components together 

explain 98.4% of the total variability. Hence, two principal components again appear 

to capture most of the variability in yield curve changes. Figure 4 

coefficients of the first three principal components by term to maturity. 
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Figure 4 Coefficients for the first three principal components of yield changes 

The first principal component affects all maturities by similar amounts and in the same 

direction. It can be interpreted as a level shift factor but not as a parallel shift factor 

since the coefficients are unequal. Unlike the levels PCA, the short end of the curve 

moves less than the long end in response to the score of the first principal component. 

The second factor has an opposite effect on short and long yields and can be viewed as 

a slope change factor. The third principal component has a negative effect on medium 

yields and a positive effect on short and long-term yields and hence can be interpreted 

as a curvature factor. Figure 5 illustrates the principal component scores for the Iirst 
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three principal components of yield curve changes for the period January 1986 to 

December 1998. 

25 1 

Figure 5 Principal component scores for yield changes (1986 - 1998) 

The traditional theory of immunisation as developed by Redington (1952) immunises a 

portfolio against parallel shifts in the yield curve. Parallel shifts imply the existence of 

arbitrage opportunities (see Boyle, 1978) and it is important to note that the first 

principal component does not represent an entirely parallel shift. However, for terms 

greater than 5 years, the first principal component does seem to represent a parallel 

shift and for terms greater than 12 years, the second principal component also seems to 

represent virtually parallel shifts. Hence, the first two principal components, which 

represent 97.3% of the total variability, appear to indicate the regular occurrence of 

parallel shifts and hence arbitrage opportunities at the long end of the curve. 

Estimates of variances, covariances and correlations can be very sensitive to outliers 

and so we can expect principal components to have the same sensitivity. The extreme 

scores for the first principal component between August and October 1998 shown in 
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Figure 5 and the corresponding large changes in the level of the yield curve evident 

from Figure 1 suggest the need for a PCA for sub-periods of the dam. For the sub- 

period 1986-1997, the proportion of the variability explained by the first principal 

component of yield curve changes decreases from 92.8% (for the period 1986- 1998) to 

90.0%. 

For level yields, the proportion of the variability explained by the first principal 

component reduces from 77.1% (for the period 1986-1998) to 76.1% for the sub- 

period 1986-1997. In both the level and the differenced yield sub-period analyses, the 

principal components remain relatively unchanged suggesting that the full period 

analysis is relatively robust to the outliers from August to October 1998. A number of 

alternative sub-periods have been considered and the results of the full period appear 

to be relatively robust to the choice of sub-period. 

In the above analyses, principal components have been derived from the covariance 

matrix. If the variables in a PCA are measured on scales with widely differing ranges, 

it is preferable to use the correlation matrix (see Seber, 1984). Although the higher 

volatility of short rates compared with long rates results in an increased loading of the 

short rate on the first few factors, a PCA for both the levels yields and yield 

differences using the correlation matrix gives principal components and variability 

proportions that are similar to those obtained using the covariance matrices. Hence, the 

results of the PCA on the covariance matrix appear to be relatively robust to the lack of 

scaling. This is not too surprising given that the standard deviations of short and long 

yields are of the same order of magnitude. 

One further point worth considering is the effect that the mathematical formulation of 

the JSE-Actuaries Yield Curve may have on the principal components analysis. The 

curve is constructed in two steps (see McLeod (1990)): 
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1) Using a form of cluster analysis, five cluster points are estimated and bonds are 

assigned to each cluster. The bonds in each cluster are then used to determine a 

weighted average term to maturity and a weighted average yield for their 

respective clusters. A sixth cluster with a maturity of 30 years and yield equal 

to the weighted average yield of the cluster with the highest weighted average 

yield is also determined. 

2) Using these six cluster points, intermediate points along the curve are estimated 

using cubic spline interpolation. 

Since the yield value of the sixth cluster is derived directly from one of the existing 

five cluster points, there are effectively five independent points along the curve. 

Hence, it is unlikely that more than five principal components would be required to 

reproduce most of the variability of the yield curve. The fact that two principal 

components capture most of the variability is a strong indication that the PCA is not 

constrained by the mathematical formulation of the yield curve. 

Reconstructing the yield curve 

Using the principal components, T, and the principal component scores at time t, yt, of 

the level yields (change in yields), the level yields (change in yields) at time t, x1, can 

be reconstructed as xt = T.yt + u. Since the first two principal components capture 

most of the variability in x for a PCA of both the levels and first differences, xt = yi,rti 

+ yz,t.tz + p. 

In order to model the evolution of xt over time, the time series properties of yi,r and y2,t 

must be modelled. However, since the link between these scores and the other 

variables in a full model will depend on the eigenvectors tl and t2, the resulting model 

may be difficult to interpret. Alternatively, if any two yields (change in yields), xqt and 

xb,t, are modelled stochastically, these can be used to estimate yt,r and y2,t, from which 

can be derived the full yield curve as explained above. More formally: 
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Let z, =[;;:]=[;:J]-[;j. 

Then 

so j7, = 3-1 . z, 

Hence I, =[t, t,].Pz, +p,. 

(9 

(ii) 

(iii) 

(iv) 

Monthly data for the JSE-Actuaries Yield Curve for annual terms between 0 and 25 

years is available from January 1986 onwards. Prior to this, only yields on 3- and 20- 

year bonds are available as well as the Alexander Forbes Money Market Index, from 

which can be derived a proxy for the short rate. These three series are available from 

1960 onwards. Hence, if data for the full period from 1960 to 1998 is required for 

modelling purposes, it is only possible to model these three points on the yield curve. 

If most of the variability in the yield curve could be explained by one principal 

component, the correlation between yields at different terms would be close to one and 

the yield at any term would be sufficient to reproduce the entire yield curve. Since two 

principal components are required to explain most of the variability in the yield curve, 

we require two terms, a and b, to reproduce the entire yield curve. These two terms 

should be chosen so that the correlation between them is as small as possible in order 

to minimise the error in estimating ~1,~ and ~2,~. The correlation matrix for JAYCOO, 

JA YC03 and JAYC20 is presented in Table 2. 
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JAYCOO JAYC03 JAYCZO 
JAYCOO 1 0.74 0.67 
JAYC03 0.87 1 0.92 
JAYCZO 0.44 0.75 1 

Table 2 Yield correlations (1986 - 1998) 

(Level yield correlations below the diagonal 

and differenced yield correlations above) 

The correlations between JAYCOO and JAYC20 in Table 2 are less than the other 

correlations suggesting that JAYC03 can be dropped from the set of model variables. 

Figures 2 and 4 confirm this suggestion since the greatest differences between the 

coefficients of the first and second principal components are at the short and long 

maturities. Further, for most months between January 1986 and December 1998, 

JAYC03 lies between JAYCOO and JAYC20. Since the difference in term between 

JAYCOO and JAYCZO is the largest, errors in forecasting JAYCOO and JAYC20 have a 

smaller effect on the forecast error for JAYC03 than any other pair of yields might 

have on the remaining yield. 

Conclusion 

From a statistical perspective, the short rate and the long-bond yield should be used to 

reconstruct the par yield curve, given the first and second principal components. 

Hence, in forecasting the yield curve, one need only forecast the short rate and the 

long-bond yield. If these variables are modelled as non-stationary variables, the yield 

curve can be reconstructed given forecast changes together with the yield curve at time 

zero. Otherwise, the yield curve can be reconstructed directly using equations (i) - (iv). 

A number of other reasons exist for modelling the long-bond yield and the short rate as 

part of a larger set of variables but a discussion of this is beyond the scope of this 

paper. 
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